Scalable EV planning with telematics & EV-FIT

Christopher de Saxe - Head of EV Transition, GoMetro UK

The EV transition for shippers & LSPs

External pressures

- Net zero targets
- ICE phase-out dates
- Low Emission Zones
- Scope 3 emission reporting
- Competition

Uncertainty & cost

- Operational alignment
- Business case as a key driver
- Costly & complicated tools
- Support for SME fleets

Data visibility

- Global fleets
- Sub-contractors
- Full journey coverage (vs. origin-destination)

Shippers & LSP's need a lightweight and scalable EV planning solution with streamlined data collection

EV-FIT Feasibility Implementation Transition

EV-FIT: How does it work?

Telematics Integration

Connect your data seamlessly via **GoMetro Bridge**. Don't worry about which telematics systems you use; we can include multiple sources and even include out-sourced fleets.

Data processing


EV-FIT does the heavy-lifting, calculating trip distances, dwell times and battery sizes, assessing the EV feasibility of vehicles and individual trips.

Actionable insights

You get the key information you need packaged in an easy-to-understand report including a costed purchase plan.

Choose from a predefined feasibility report, or a customisable suite of interactive dashboards

Vehicle feasibility & batteries

Advanced trip analytics

Depot charging insights

Advanced heatmaps

Case study - Welch's Transport

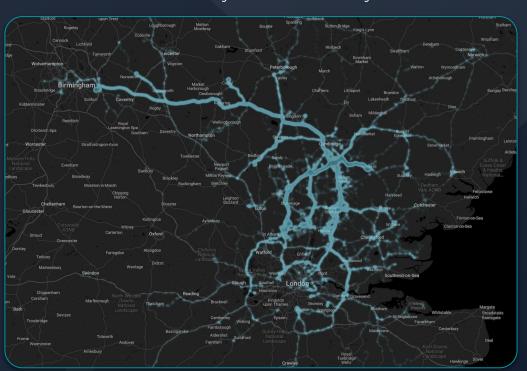
Deliverables

EV feasibility & battery spec (20/30 vehicles)

Reg	Vehicle Type	Make & model	TCO - ICEV	TCO - EV 2025	EV cost feasibility 2025	TCO - EV 2030	EV cost feasibility 2030
AR02DEX	44t Artic	Renault T460.26	£818,032	£872,328	Not feasible	£750,078	Feasible
AR03DEX	44t Artic	Renault T460.28	£905,125	£944,768	Not feasible	£818,730	Feasible
AR05DEX	26t Rigid	Renault R320	£412,865	£472,225	Not feasible	£394,923	Feasible
AY18JWA	Van	Mitsubishi Canter	£135,187	£123,093	Feasible	£102,815	Feasible
BF65WBY	7.5t Rigid	DAF LF45.150	£213,302	£168,932	Feasible	£145,062	Feasible
HX17CVV	44t Artic	Renault T460.26	£562,520	£603,011	Not feasible	£499,293	Feasible
H0055EEF	26t Rigid	Renault R320	£375,827	£458,991	Not feasible	£379,292	Not feasible
HX66DMY	26t Rigid	Renault R320	£303,405	£359,679	Not feasible	£286,705	Feasible
HXX66DUH	18t Rigid	Renault R250	£325,818	£337,404	Not feasible	£276,879	Feasible
LN67SWJ	18t Rigid	Renault R250	£240,401	£273,330	Not feasible	£214,795	Feasible
N88RNW	26t Rigid	Renault R320	£472,014	£533,910	Not feasible	£451,261	Feasible
N8GNW	44t Artic	Renault T460.26	£703,728	£824,897	Not feasible	£896,840	Feasible
PSSGNW	26t Rigid	Renault R320	£444,343	£498,883	Not feasible	£420,131	Feasible
R89GNW	44t Artic	Renault T480.26	£745,391	£843,331	Not feasible	£717,132	Feasible
T88GNW	12t Rigid	DAF LF210	£271,244	£246,801	Feasible	£210,116	Feasible
WASSW	44t Artic	Renault T480.26	£848,703	£885,704	Not feasible	£764,865	Feasible
W88RNW	18t Rigid	Renault R250	£347,431	£345,939	Feasible	£286,648	Feasible
X88GNW	44t Artic	Renault T460.26	£889,213	£928,902	Not feasible	£804,151	Feasible
Y888GNW	44t Artic	Renault T460.26	£787,515	£850,241	Not feasible	£728,573	Feasible
Y8GNW	26t Rigid	Renault R320	£388,457	£459,449	Not feasible	£381,485	Feasible

Economic feasibility (4/30 in 2025, 19/30 in 2030)

Costed purchase plan (4 x veh, battery sizes, chargers)



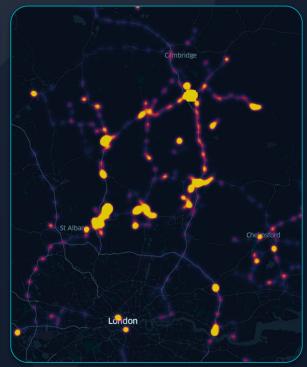
Collaborative charging opportunities

Feasible routes & customers (depot charging)

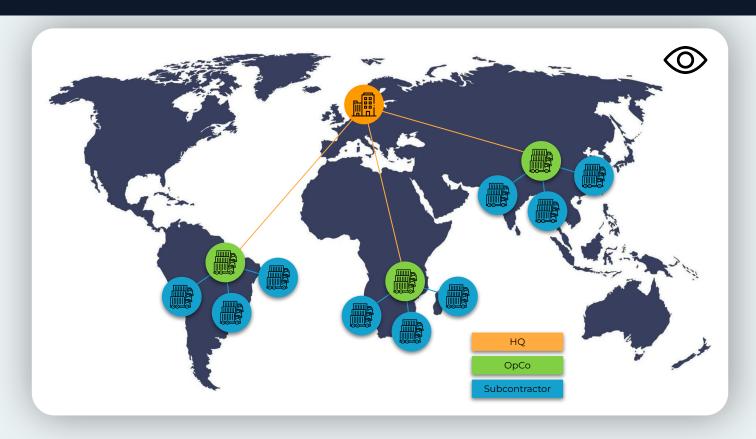
Technically viable routes today

Economically viable routes

Use cases requiring out-of-depot charging


Routes (> 600 kWh)

Dwell events


Rest stop need (4.5 h drive time)

Bridge: OpCo & subcontractor visibility

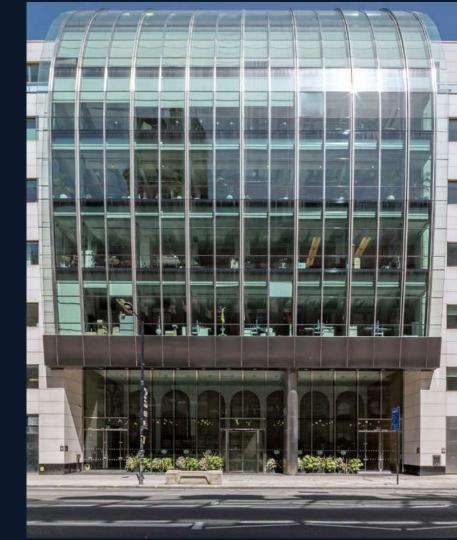
Bridge means not only visibility over your global OpCo's, but also over each of your OpCo's subcontracted fleets, giving shippers the data needed to measure logistics emissions and track decarbonisation progress.

Closing comments

- Basic telematics data holds much of the necessary insights needed for EV planning
- We need to reduce the barriers to and complexity of EV planning to accelerate adoption
- Data visibility and consistency remain challenges for global shippers and LSP's
- Opportunities for multi-fleet analysis with pooled data (e.g. for shared charging sites on corridors)
- Reach out for a demo!

Read more on our Welch's case study:
https://gometroapp.com/case-studie/case-study-acc
elerating-fleet-decarbonisation-with-gometro-ey-fit/

FREIGHT INNOVATION FUND ACCELERATOR 2024



Get in touch for more information!

Christopher de Saxe christopher.desaxe@gometroapp.com www.gometroapp.com

LABS, 90 High Holborn, London WCIV 6LJ

